» Nilai Masa Wang: Nilai kini dan masa depan

Data Awal




Jenis pembayaran



Aliran tunai (C)

Kadar faedah tahunan (r)
%

Kadar pertumbuhan tahunan (g)
%

Tempoh (t)




Hasil


 

 

Nilai kini (PV)


\begin{align} PV_{Annuity\; Due}&=C \times \left[\frac{1-(1+\frac{r}{n})^{-t}}{\frac{r}{n}}\right]\times(1+\frac{r}{n})\\ PV_{Ordinary\; Annuity}&=C \times \left[\frac{1-(1+\frac{r}{n})^{-t}}{\frac{r}{n}}\right]\\ PV&=\frac {C_{t}}{(1+\frac{r}{n})^{t}} \end{align}


Nilai masa depan (FV)


\begin{align} FV_{Annuity\; Due}&=C \times \left[\frac{(1+\frac{r}{n})^{t}-1}{\frac{r}{n}}\right]\times (1+\frac{r}{n})\\ FV_{Ordinary\; Annuity}&=C \times \left[\frac{(1+\frac{r}{n})^{t}-1}{\frac{r}{n}}\right]\\ FV&=C_{0}\times (1+\frac{r}{n})^{t}\\ \end{align}